U
    MZf\                     @  s  d dl mZ d dlZd dlmZ d dlmZ d dlmZ d dl	Z
d dlmZ d dlm  m  mZ d dlmZmZ erd dlmZmZ d d	lmZ d d
lmZ d dlmZmZ d dlm Z  d dl!m"Z" d dl#m$Z$m%Z%m&Z& d dl'm(Z(m)Z) d dl*m+Z+ d dl,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4 d dl5m6Z6m7Z7 d dl8m9Z9m:Z: d dl;m<Z<m=Z= ddddddddZ>ddddddZ?G d d! d!e<Z@G d"d# d#e=e@ZAG d$d% d%e@ZBdS )&    )annotationsN)partial)dedent)TYPE_CHECKING)	Timedelta)AxisTimedeltaConvertibleTypes)	DataFrameSeries)NDFrame)doc)is_datetime64_ns_dtypeis_numeric_dtype)isna)common)BaseIndexerExponentialMovingWindowIndexerGroupbyIndexer)get_jit_argumentsmaybe_use_numba)zsqrt)_shared_docscreate_section_headerkwargs_numeric_onlynumba_notestemplate_headertemplate_returnstemplate_see_alsowindow_agg_numba_parameters)generate_numba_ewm_funcgenerate_numba_ewm_table_func)EWMMeanStategenerate_online_numba_ewma_func)
BaseWindowBaseWindowGroupbyfloat | Nonefloat)comassspanhalflifealphareturnc                 C  s   t | |||}|dkr td| d k	r:| dk rtdn|d k	r`|dk rRtd|d d } nt|d k	r|dkrxtddttd|  }d| d } n6|d k	r|dks|dkrtd	d| | } ntd
t| S )N   z8comass, span, halflife, and alpha are mutually exclusiver   z comass must satisfy: comass >= 0zspan must satisfy: span >= 1   z#halflife must satisfy: halflife > 0g      ?z"alpha must satisfy: 0 < alpha <= 1z1Must pass one of comass, span, halflife, or alpha)r   count_not_none
ValueErrornpexplogr&   )r'   r(   r)   r*   Zvalid_countZdecay r3   :/tmp/pip-unpacked-wheel-nbcvw55c/pandas/core/window/ewm.pyget_center_of_mass@   s*    
r5   znp.ndarray | NDFrame(float | TimedeltaConvertibleTypes | None
np.ndarray)timesr)   r+   c                 C  s:   t j| t jt jd}tt|dj}t 	|| S )a  
    Return the diff of the times divided by the half-life. These values are used in
    the calculation of the ewm mean.

    Parameters
    ----------
    times : np.ndarray, Series
        Times corresponding to the observations. Must be monotonically increasing
        and ``datetime64[ns]`` dtype.
    halflife : float, str, timedelta, optional
        Half-life specifying the decay

    Returns
    -------
    np.ndarray
        Diff of the times divided by the half-life
    dtypens)
r0   ZasarrayviewZint64float64r&   r   Zas_unit_valueZdiff)r8   r)   Z_timesZ	_halflifer3   r3   r4   _calculate_deltasa   s    r?   c                      s  e Zd ZdZdddddddd	d
dg
Zd^ddddddddddddddd fddZddddd d!d"Zd#d$d%d&Zd_dd(d)d*d+Ze	e
d, ed-ed.d/d0d1 fd2d3ZeZe	eed4ee ed5eed6eed7ed8d0d9d:d;d<d=d`dd>d?d@Ze	eed4ee ed5eed6eed7ed8d0d9d:dAdBd=dadd>dCdDZe	eed4edEd8d0d9eed5eed6eddF d:dGdHd=dbdddIdJdKZe	eed4edEd8d0d9eed5eed6eddF d:dLdMd=dcdddIdNdOZe	eed4edPd8d0d9eed5eed6eddF d:dQdRd=dddSdTdddUdVdWZe	eed4edXd8d0d9eed5eed6eddF d:dYdZd=dedSdTdd[d\d]Z  ZS )fExponentialMovingWindowa&  
    Provide exponentially weighted (EW) calculations.

    Exactly one of ``com``, ``span``, ``halflife``, or ``alpha`` must be
    provided if ``times`` is not provided. If ``times`` is provided,
    ``halflife`` and one of ``com``, ``span`` or ``alpha`` may be provided.

    Parameters
    ----------
    com : float, optional
        Specify decay in terms of center of mass

        :math:`\alpha = 1 / (1 + com)`, for :math:`com \geq 0`.

    span : float, optional
        Specify decay in terms of span

        :math:`\alpha = 2 / (span + 1)`, for :math:`span \geq 1`.

    halflife : float, str, timedelta, optional
        Specify decay in terms of half-life

        :math:`\alpha = 1 - \exp\left(-\ln(2) / halflife\right)`, for
        :math:`halflife > 0`.

        If ``times`` is specified, a timedelta convertible unit over which an
        observation decays to half its value. Only applicable to ``mean()``,
        and halflife value will not apply to the other functions.

        .. versionadded:: 1.1.0

    alpha : float, optional
        Specify smoothing factor :math:`\alpha` directly

        :math:`0 < \alpha \leq 1`.

    min_periods : int, default 0
        Minimum number of observations in window required to have a value;
        otherwise, result is ``np.nan``.

    adjust : bool, default True
        Divide by decaying adjustment factor in beginning periods to account
        for imbalance in relative weightings (viewing EWMA as a moving average).

        - When ``adjust=True`` (default), the EW function is calculated using weights
          :math:`w_i = (1 - \alpha)^i`. For example, the EW moving average of the series
          [:math:`x_0, x_1, ..., x_t`] would be:

        .. math::
            y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ... + (1 -
            \alpha)^t x_0}{1 + (1 - \alpha) + (1 - \alpha)^2 + ... + (1 - \alpha)^t}

        - When ``adjust=False``, the exponentially weighted function is calculated
          recursively:

        .. math::
            \begin{split}
                y_0 &= x_0\\
                y_t &= (1 - \alpha) y_{t-1} + \alpha x_t,
            \end{split}
    ignore_na : bool, default False
        Ignore missing values when calculating weights.

        - When ``ignore_na=False`` (default), weights are based on absolute positions.
          For example, the weights of :math:`x_0` and :math:`x_2` used in calculating
          the final weighted average of [:math:`x_0`, None, :math:`x_2`] are
          :math:`(1-\alpha)^2` and :math:`1` if ``adjust=True``, and
          :math:`(1-\alpha)^2` and :math:`\alpha` if ``adjust=False``.

        - When ``ignore_na=True``, weights are based
          on relative positions. For example, the weights of :math:`x_0` and :math:`x_2`
          used in calculating the final weighted average of
          [:math:`x_0`, None, :math:`x_2`] are :math:`1-\alpha` and :math:`1` if
          ``adjust=True``, and :math:`1-\alpha` and :math:`\alpha` if ``adjust=False``.

    axis : {0, 1}, default 0
        If ``0`` or ``'index'``, calculate across the rows.

        If ``1`` or ``'columns'``, calculate across the columns.

        For `Series` this parameter is unused and defaults to 0.

    times : np.ndarray, Series, default None

        .. versionadded:: 1.1.0

        Only applicable to ``mean()``.

        Times corresponding to the observations. Must be monotonically increasing and
        ``datetime64[ns]`` dtype.

        If 1-D array like, a sequence with the same shape as the observations.

    method : str {'single', 'table'}, default 'single'
        .. versionadded:: 1.4.0

        Execute the rolling operation per single column or row (``'single'``)
        or over the entire object (``'table'``).

        This argument is only implemented when specifying ``engine='numba'``
        in the method call.

        Only applicable to ``mean()``

    Returns
    -------
    ``ExponentialMovingWindow`` subclass

    See Also
    --------
    rolling : Provides rolling window calculations.
    expanding : Provides expanding transformations.

    Notes
    -----
    See :ref:`Windowing Operations <window.exponentially_weighted>`
    for further usage details and examples.

    Examples
    --------
    >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})
    >>> df
         B
    0  0.0
    1  1.0
    2  2.0
    3  NaN
    4  4.0

    >>> df.ewm(com=0.5).mean()
              B
    0  0.000000
    1  0.750000
    2  1.615385
    3  1.615385
    4  3.670213
    >>> df.ewm(alpha=2 / 3).mean()
              B
    0  0.000000
    1  0.750000
    2  1.615385
    3  1.615385
    4  3.670213

    **adjust**

    >>> df.ewm(com=0.5, adjust=True).mean()
              B
    0  0.000000
    1  0.750000
    2  1.615385
    3  1.615385
    4  3.670213
    >>> df.ewm(com=0.5, adjust=False).mean()
              B
    0  0.000000
    1  0.666667
    2  1.555556
    3  1.555556
    4  3.650794

    **ignore_na**

    >>> df.ewm(com=0.5, ignore_na=True).mean()
              B
    0  0.000000
    1  0.750000
    2  1.615385
    3  1.615385
    4  3.225000
    >>> df.ewm(com=0.5, ignore_na=False).mean()
              B
    0  0.000000
    1  0.750000
    2  1.615385
    3  1.615385
    4  3.670213

    **times**

    Exponentially weighted mean with weights calculated with a timedelta ``halflife``
    relative to ``times``.

    >>> times = ['2020-01-01', '2020-01-03', '2020-01-10', '2020-01-15', '2020-01-17']
    >>> df.ewm(halflife='4 days', times=pd.DatetimeIndex(times)).mean()
              B
    0  0.000000
    1  0.585786
    2  1.523889
    3  1.523889
    4  3.233686
    comr(   r)   r*   min_periodsadjust	ignore_naaxisr8   methodNr   TFsingle	selectionr   r%   r6   
int | Noneboolr   np.ndarray | NDFrame | NonestrNone)objrA   r(   r)   r*   rB   rC   rD   rE   r8   rF   r+   c             
     s  t  j||d krdntt|dd dd ||	|d || _|| _|| _|| _|| _|| _	|
| _
| j
d k	r | jsvtdt| j
stdt| j
t|krtdt| jttjtjfstdt| j
 rtdt| j
| j| _t| j| j| jd	krt| j| jd | j| _nd
| _nj| jd k	rLt| jttjtjfrLtdtjt| jj| j  d d	tj!d| _t| j| j| j| j| _d S )Nr,   F)rO   rB   oncenterclosedrF   rE   rI   z)times is not supported with adjust=False.z#times must be datetime64[ns] dtype.z,times must be the same length as the object.z/halflife must be a timedelta convertible objectz$Cannot convert NaT values to integerr   g      ?zKhalflife can only be a timedelta convertible argument if times is not None.r9   )"super__init__maxintrA   r(   r)   r*   rC   rD   r8   NotImplementedErrorr   r/   len
isinstancerM   datetime	timedeltar0   Ztimedelta64r   anyr?   _deltasr   r.   r5   _comonesrO   shaperE   r=   )selfrO   rA   r(   r)   r*   rB   rC   rD   rE   r8   rF   rI   	__class__r3   r4   rT   K  sb    

  z ExponentialMovingWindow.__init__r7   rV   )startendnum_valsr+   c                 C  s   d S Nr3   )ra   rd   re   rf   r3   r3   r4   _check_window_bounds  s    z,ExponentialMovingWindow._check_window_boundsr   r+   c                 C  s   t  S )z[
        Return an indexer class that will compute the window start and end bounds
        )r   ra   r3   r3   r4   _get_window_indexer  s    z+ExponentialMovingWindow._get_window_indexernumbaOnlineExponentialMovingWindow)enginer+   c                 C  s8   t | j| j| j| j| j| j| j| j| j	| j
||| jdS )a  
        Return an ``OnlineExponentialMovingWindow`` object to calculate
        exponentially moving window aggregations in an online method.

        .. versionadded:: 1.3.0

        Parameters
        ----------
        engine: str, default ``'numba'``
            Execution engine to calculate online aggregations.
            Applies to all supported aggregation methods.

        engine_kwargs : dict, default None
            Applies to all supported aggregation methods.

            * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil``
              and ``parallel`` dictionary keys. The values must either be ``True`` or
              ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is
              ``{{'nopython': True, 'nogil': False, 'parallel': False}}`` and will be
              applied to the function

        Returns
        -------
        OnlineExponentialMovingWindow
        )rO   rA   r(   r)   r*   rB   rC   rD   rE   r8   rn   engine_kwargsrI   )rm   rO   rA   r(   r)   r*   rB   rC   rD   rE   r8   Z
_selection)ra   rn   ro   r3   r3   r4   online  s    zExponentialMovingWindow.online	aggregatezV
        See Also
        --------
        pandas.DataFrame.rolling.aggregate
        a  
        Examples
        --------
        >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
        >>> df
           A  B  C
        0  1  4  7
        1  2  5  8
        2  3  6  9

        >>> df.ewm(alpha=0.5).mean()
                  A         B         C
        0  1.000000  4.000000  7.000000
        1  1.666667  4.666667  7.666667
        2  2.428571  5.428571  8.428571
        zSeries/Dataframe )Zsee_alsoZexamplesklassrE   c                   s   t  j|f||S rg   )rS   rq   ra   funcargskwargsrb   r3   r4   rq     s    z!ExponentialMovingWindow.aggregateZ
ParametersZReturnszSee AlsoZNotes
r,   ewmz"(exponential weighted moment) meanmean)Zwindow_methodZaggregation_descriptionZ
agg_method)numeric_onlyc              	   C  s   t |rT| jdkrt}nt}|f t|| j| j| jt| j	dd}| j
|ddS |dkr|d k	rltd| jd krzd n| j	}ttj| j| j| j|dd}| j
|d|dS td	d S )
NrG   TrA   rC   rD   deltas	normalizerz   nameZcythonN+cython engine does not accept engine_kwargsr   r{   )engine must be either 'numba' or 'cython')r   rF   r   r    r   r^   rC   rD   tupler]   _applyr/   r8   r   window_aggregationsry   ra   r{   rn   ro   ru   Zewm_funcr}   window_funcr3   r3   r4   rz     s6    

zExponentialMovingWindow.meanz!(exponential weighted moment) sumsumc              	   C  s   | j stdt|rb| jdkr&t}nt}|f t|| j| j | jt	| j
dd}| j|ddS |dkr|d k	rztd| jd krd n| j
}ttj| j| j | j|dd}| j|d|d	S td
d S )Nz(sum is not implemented with adjust=FalserG   Fr|   r   r   r   r   r   r   )rC   rW   r   rF   r   r    r   r^   rD   r   r]   r   r/   r8   r   r   ry   r   r3   r3   r4   r   $  s:    

zExponentialMovingWindow.sumzc
        bias : bool, default False
            Use a standard estimation bias correction.
        z0(exponential weighted moment) standard deviationstdbiasr{   c                 C  sB   |r0| j jdkr0t| j js0tt| j dt| j||dS )Nr,   z$.std does not implement numeric_onlyr   )	_selected_objndimr   r:   rW   type__name__r   varra   r   r{   r3   r3   r4   r   Z  s    

zExponentialMovingWindow.stdz&(exponential weighted moment) variancer   c                   s:   t j}t|| j| j| j|d  fdd}| j|d|dS )N)rA   rC   rD   r   c                   s    | |||| S rg   r3   )valuesbeginre   rB   Zwfuncr3   r4   var_func  s    z-ExponentialMovingWindow.var.<locals>.var_funcr   r   )r   ewmcovr   r^   rC   rD   r   )ra   r   r{   r   r   r3   r   r4   r   x  s    zExponentialMovingWindow.vara  
        other : Series or DataFrame , optional
            If not supplied then will default to self and produce pairwise
            output.
        pairwise : bool, default None
            If False then only matching columns between self and other will be
            used and the output will be a DataFrame.
            If True then all pairwise combinations will be calculated and the
            output will be a MultiIndex DataFrame in the case of DataFrame
            inputs. In the case of missing elements, only complete pairwise
            observations will be used.
        bias : bool, default False
            Use a standard estimation bias correction.
        z/(exponential weighted moment) sample covariancecovDataFrame | Series | Nonebool | Noneotherpairwiser   r{   c                   s<   ddl m  d|  fdd}j||||S )Nr   r
   r   c           	        s    | } |} }jd k	r,jn|j}|jt||jjjd\}}t	
|||j|jjj	} || j| jddS )NZ
num_valuesrB   rQ   rR   stepFindexr   copy)_prep_valuesrk   rB   window_sizeget_window_boundsrX   rQ   rR   r   r   r   r^   rC   rD   r   r   )	xyx_arrayy_arraywindow_indexerrB   rd   re   resultr
   r   ra   r3   r4   cov_func  s4    


z-ExponentialMovingWindow.cov.<locals>.cov_funcpandasr
   Z_validate_numeric_onlyZ_apply_pairwiser   )ra   r   r   r   r{   r   r3   r   r4   r     s    #    zExponentialMovingWindow.covaL  
        other : Series or DataFrame, optional
            If not supplied then will default to self and produce pairwise
            output.
        pairwise : bool, default None
            If False then only matching columns between self and other will be
            used and the output will be a DataFrame.
            If True then all pairwise combinations will be calculated and the
            output will be a MultiIndex DataFrame in the case of DataFrame
            inputs. In the case of missing elements, only complete pairwise
            observations will be used.
        z0(exponential weighted moment) sample correlationcorrr   r   r{   c                   s:   ddl m  d|  fdd}j||||S )Nr   r   r   c           
   	     s    | } |} }jd k	r,jn|j|jt|jjjd\  fdd}t	j
dd4 |||}|||}|||}|t||  }	W 5 Q R X |	| j| jddS )Nr   c                   s    t |  |jjjd	S )NT)r   r   r^   rC   rD   )XY)re   rB   ra   rd   r3   r4   _cov  s    z<ExponentialMovingWindow.corr.<locals>.cov_func.<locals>._covignore)allFr   )r   rk   rB   r   r   rX   rQ   rR   r   r0   Zerrstater   r   r   )
r   r   r   r   r   r   r   Zx_varZy_varr   r
   ra   )re   rB   rd   r4   r     s*    





z.ExponentialMovingWindow.corr.<locals>.cov_funcr   )ra   r   r   r{   r   r3   r   r4   r     s     %    zExponentialMovingWindow.corr)
NNNNr   TFr   NrG   )rl   N)FNN)FNN)FF)FF)NNFF)NNF)r   
__module____qualname____doc___attributesrT   rh   rk   rp   r   r   r   rq   Zaggr   r   r   r   r   r   r   replacerz   r   r   r   r   r   __classcell__r3   r3   rb   r4   r@   |   sR   C          ,I   ,   %   '  
  
  
    .  
   r@   c                      sF   e Zd ZdZejej Zdddd fddZddd	d
Z  Z	S )ExponentialMovingWindowGroupbyzF
    Provide an exponential moving window groupby implementation.
    N)_grouperrN   ri   c                  s\   t  j|f|d|i| |jsX| jd k	rXtt| jj	 }t
| j|| j| _d S )Nr   )rS   rT   emptyr8   r0   concatenatelistr   indicesr   r?   Ztaker)   r]   )ra   rO   r   rv   rw   Zgroupby_orderrb   r3   r4   rT   8  s    
z'ExponentialMovingWindowGroupby.__init__r   c                 C  s   t | jjtd}|S )z
        Return an indexer class that will compute the window start and end bounds

        Returns
        -------
        GroupbyIndexer
        )Zgroupby_indicesr   )r   r   r   r   )ra   r   r3   r3   r4   rk   C  s
    z2ExponentialMovingWindowGroupby._get_window_indexer)
r   r   r   r   r@   r   r$   rT   rk   r   r3   r3   rb   r4   r   1  s   r   c                      s   e Zd Zd*dddddd	dd
dddddddd fddZddddZdd Zd+ddddZd,dddddd Zd-ddddd!d"d#Zd.ddd$d%d&Z	ddd'd(d)Z
  ZS )/rm   Nr   TFrl   rH   r   r%   r6   rJ   rK   r   rL   rM   zdict[str, bool] | NonerN   )rO   rA   r(   r)   r*   rB   rC   rD   rE   r8   rn   ro   r+   c                  sp   |
d k	rt dt j|||||||||	|
|d t| j| j| j| j|j| _	t
|rd|| _|| _ntdd S )Nz0times is not implemented with online operations.)rO   rA   r(   r)   r*   rB   rC   rD   rE   r8   rI   z$'numba' is the only supported engine)rW   rS   rT   r!   r^   rC   rD   rE   r`   _meanr   rn   ro   r/   )ra   rO   rA   r(   r)   r*   rB   rC   rD   rE   r8   rn   ro   rI   rb   r3   r4   rT   S  s8        z&OnlineExponentialMovingWindow.__init__ri   c                 C  s   | j   dS )z=
        Reset the state captured by `update` calls.
        N)r   resetrj   r3   r3   r4   r   ~  s    z#OnlineExponentialMovingWindow.resetc                 O  s   t dd S )Nzaggregate is not implemented.rW   rt   r3   r3   r4   rq     s    z'OnlineExponentialMovingWindow.aggregate)r   c                 O  s   t dd S )Nzstd is not implemented.r   )ra   r   rv   rw   r3   r3   r4   r     s    z!OnlineExponentialMovingWindow.stdr   r   r   c                 C  s   t dd S )Nzcorr is not implemented.r   )ra   r   r   r{   r3   r3   r4   r     s    z"OnlineExponentialMovingWindow.corrr   c                 C  s   t dd S )Nzcov is not implemented.r   )ra   r   r   r   r{   r3   r3   r4   r     s    z!OnlineExponentialMovingWindow.covr   c                 C  s   t dd S )Nzvar is not implemented.r   r   r3   r3   r4   r     s    z!OnlineExponentialMovingWindow.var)updateupdate_timesc                O  sh  i }| j jdk}|dk	r tdtjt| j j| jd  d dtjd}|dk	r| j	j
dkrdtdd}|j|d< |r| j	j
tjddf }	|j|d	< n| j	j
}	|j|d
< t|	| f}
n@d}| j j|d< |r| j j|d	< n| j j|d
< | j tj }
tf t| j}| j	|r|
n|
ddtjf || j|}|sH| }||d }| j j|f|}|S )a[  
        Calculate an online exponentially weighted mean.

        Parameters
        ----------
        update: DataFrame or Series, default None
            New values to continue calculating the
            exponentially weighted mean from the last values and weights.
            Values should be float64 dtype.

            ``update`` needs to be ``None`` the first time the
            exponentially weighted mean is calculated.

        update_times: Series or 1-D np.ndarray, default None
            New times to continue calculating the
            exponentially weighted mean from the last values and weights.
            If ``None``, values are assumed to be evenly spaced
            in time.
            This feature is currently unsupported.

        Returns
        -------
        DataFrame or Series

        Examples
        --------
        >>> df = pd.DataFrame({"a": range(5), "b": range(5, 10)})
        >>> online_ewm = df.head(2).ewm(0.5).online()
        >>> online_ewm.mean()
              a     b
        0  0.00  5.00
        1  0.75  5.75
        >>> online_ewm.mean(update=df.tail(3))
                  a         b
        2  1.615385  6.615385
        3  2.550000  7.550000
        4  3.520661  8.520661
        >>> online_ewm.reset()
        >>> online_ewm.mean()
              a     b
        0  0.00  5.00
        1  0.75  5.75
        r-   Nz update_times is not implemented.r,   r   r9   z;Must call mean with update=None first before passing updater   columnsr   )r   r   rW   r0   r_   rU   r`   rE   r=   r   Zlast_ewmr/   r   Znewaxisr   r   r   Zto_numpyZastyper"   r   ro   Zrun_ewmrB   ZsqueezeZ_constructor)ra   r   r   rv   rw   Zresult_kwargsZis_frameZupdate_deltasZresult_from
last_valueZnp_arrayZ	ewma_funcr   r3   r3   r4   rz     sR    , 

z"OnlineExponentialMovingWindow.mean)NNNNr   TFr   Nrl   N)F)NNF)NNFF)FF)r   r   r   rT   r   rq   r   r   r   r   rz   r   r3   r3   rb   r4   rm   R  s8              .+   
    	rm   )C
__future__r   rZ   	functoolsr   textwrapr   typingr   Znumpyr0   Zpandas._libs.tslibsr   Z pandas._libs.window.aggregationsZ_libsZwindowZaggregationsr   Zpandas._typingr   r   r   r	   r
   Zpandas.core.genericr   Zpandas.util._decoratorsr   Zpandas.core.dtypes.commonr   r   Zpandas.core.dtypes.missingr   Zpandas.corer   Zpandas.core.indexers.objectsr   r   r   Zpandas.core.util.numba_r   r   Zpandas.core.window.commonr   Zpandas.core.window.docr   r   r   r   r   r   r   r   Zpandas.core.window.numba_r   r    Zpandas.core.window.onliner!   r"   Zpandas.core.window.rollingr#   r$   r5   r?   r@   r   rm   r3   r3   r3   r4   <module>   s@   (
!     :!